This page was generated from ndvi.ipynb. Interactive online version:
NDVI#
[1]:
from __future__ import annotations
import io
from pathlib import Path
import pandas as pd
import xarray as xr
import async_retriever as ar
Let’s use the DAAC server to get NDVI. We can use AsyncRetriever
and pass it directly to xarray.open_mfdataset
.
[2]:
west, south, east, north = (-69.77, 45.07, -69.31, 45.45)
base_url = "https://thredds.daac.ornl.gov/thredds/ncss/ornldaac/1299"
dates_itr = ((pd.to_datetime(f"{y}0101"), pd.to_datetime(f"{y}0131")) for y in range(2000, 2005))
urls, kwds = zip(
*(
(
f"{base_url}/MCD13.A{s.year}.unaccum.nc4",
{
"params": {
"var": "NDVI",
"north": f"{north}",
"west": f"{west}",
"east": f"{east}",
"south": f"{south}",
"disableProjSubset": "on",
"horizStride": "1",
"time_start": s.strftime("%Y-%m-%dT%H:%M:%SZ"),
"time_end": e.strftime("%Y-%m-%dT%H:%M:%SZ"),
"timeStride": "1",
"addLatLon": "true",
"accept": "netcdf",
}
},
)
for s, e in dates_itr
)
)
resp = ar.retrieve(urls, "binary", request_kwds=kwds, max_workers=8)
data = xr.open_mfdataset(io.BytesIO(r) for r in resp)
[4]:
ax = data.isel(time=slice(10, 16)).NDVI.plot(x="x", y="y", row="time", col_wrap=3)
ax.fig.savefig(Path("_static", "ndvi.png"), bbox_inches="tight", facecolor="w")