This page was generated from gridmet.ipynb. Interactive online version: Binder badge

Climate Data from GridMET#

[1]:
from __future__ import annotations

from pathlib import Path

import matplotlib.pyplot as plt

import pygridmet as gridmet
from pygridmet import GridMET
from pynhd import NLDI

The Daymet database provides climatology data at 1-km resolution. First, we use PyNHD to get the contributing watershed geometry of a NWIS station with the ID of USGS-01318500:

[2]:
geometry = NLDI().get_basins("01318500").geometry.iloc[0]

PyGridMET allows us to get the data for a single pixel or for a region as gridded data. The function to get single pixel is called pygridmet.get_bycoords and for gridded data is called pygridmet.get_bygeom. The arguments of these functions are identical except the first argument where the latter should be polygon and the former should be a coordinate (a tuple of length two as in (x, y)).

The input geometry or coordinate can be in any valid CRS (defaults to EPSG:4326). The date argument can be either a tuple of length two like (start_str, end_str) or a list of years like [2000, 2005].

We can get a dataframe of available variables and their info by calling GridMET().gridmet_table.

[3]:
GridMET().gridmet_table
[3]:
variable abbr long_name units
0 Precipitation pr precipitation_amount mm
1 Maximum Relative Humidity rmax daily_maximum_relative_humidity %
2 Minimum Relative Humidity rmin daily_minimum_relative_humidity %
3 Specific Humidity sph daily_mean_specific_humidity kg/kg
4 Surface Radiation srad daily_mean_shortwave_radiation_at_surface W/m2
5 Wind Direction th daily_mean_wind_direction Degrees clockwise from north
6 Minimum Air Temperature tmmn daily_minimum_temperature K
7 Maximum Air Temperature tmmx daily_maximum_temperature K
8 Wind Speed vs daily_mean_wind_speed m/s
9 Burning Index bi daily_mean_burning_index_g -
10 Fuel Moisture (100-hr) fm100 dead_fuel_moisture_100hr %
11 Fuel Moisture (1000-hr) fm1000 dead_fuel_moisture_1000hr %
12 Energy Release Component erc daily_mean_energy_release_component-g -
13 Reference Evapotranspiration (Alfalfa) etr daily_mean_reference_evapotranspiration_alfalfa mm
14 Reference Evapotranspiration (Grass) pet daily_mean_reference_evapotranspiration_grass mm
15 Vapor Pressure Deficit vpd daily_mean_vapor_pressure_deficit kPa
[4]:
dates = ("2000-01-01", "2000-01-06")
daily = gridmet.get_bygeom(geometry, dates, variables=["pr", "pet"])
[5]:
ax = daily.where(daily.pet > 0).pet.plot(x="lon", y="lat", row="time", col_wrap=3)
ax.fig.savefig(Path("_static", "gridmet_grid.png"), facecolor="w", bbox_inches="tight")
../../_images/examples_notebooks_gridmet_7_0.png

Note that the default CRS is EPSG:4326. If the input geometry (or coordinate) is in a different CRS we can pass it to the function. The gridded data are automatically masked to the input geometry. Now, Let’s get the data for a coordinate in EPSG:3542 CRS.

[6]:
coords = (-1431147.7928, 318483.4618)
crs = 3542
dates = ("2000-01-01", "2006-12-31")
clm = gridmet.get_bycoords(coords, dates, variables=["pr", "tmmn"], crs=crs)
[7]:
fig = plt.figure(figsize=(6, 4), facecolor="w")

gs = fig.add_gridspec(1, 2)
axes = gs[:].subgridspec(2, 1, hspace=0).subplots(sharex=True)
clm["tmmn (K)"].plot(ax=axes[0], color="r")
axes[0].set_ylabel(r"$T_{min}$ ($^\circ$C)")
axes[0].xaxis.set_ticks_position("none")
clm["pr (mm)"].plot(ax=axes[1])
axes[1].set_ylabel("$P$ (mm/day)")

plt.tight_layout()
fig.savefig("_static/gridmet_loc.png", facecolor="w", bbox_inches="tight")
../../_images/examples_notebooks_gridmet_10_0.png