pygridmet.pygridmet#
Access the GridMET database for both single single pixel and gridded queries.
Module Contents#
- pygridmet.pygridmet.get_bycoords(coords, dates, coords_id=None, crs=4326, variables=None, snow=False, snow_params=None, ssl=True, to_xarray=False)#
Get point-data from the GridMET database at 1-km resolution.
- Parameters:
coords (
tuple
orlist
oftuples
) – Coordinates of the location(s) of interest as a tuple (x, y)dates (
tuple
orlist
, optional) – Start and end dates as a tuple (start, end) or a list of years[2001, 2010, ...]
.coords_id (
list
ofint
orstr
, optional) – A list of identifiers for the coordinates. This option only applies whento_xarray
is set toTrue
. If not provided, the coordinates will be enumerated.crs (
str
,int
, orpyproj.CRS
, optional) – The CRS of the input coordinates, defaults toEPSG:4326
.variables (
str
orlist
) – List of variables to be downloaded. The acceptable variables are:pr
,rmax
,rmin
,sph
,srad
,th
,tmmn
,tmmx
,vs
,bi
,fm100
,fm1000
,erc
,etr
,pet
, andvpd
. Descriptions can be found here. Defaults toNone
, i.e., all the variables are downloaded.snow (
bool
, optional) – Compute snowfall from precipitation and minimum temperature. Defaults toFalse
.snow_params (
dict
, optional) – Model-specific parameters as a dictionary that is passed to the snowfall function. These parameters are only used ifsnow
isTrue
. Two parameters are required:t_rain
(deg C) which is the threshold for temperature for considering rain andt_snow
(deg C) which is the threshold for temperature for considering snow. The default values are{'t_rain': 2.5, 't_snow': 0.6}
that are adopted from https://doi.org/10.5194/gmd-11-1077-2018.ssl (
bool
, optional) – Whether to verify SSL certification, defaults toTrue
.to_xarray (
bool
, optional) – Return the data as anxarray.Dataset
. Defaults toFalse
.
- Returns:
pandas.DataFrame
orxarray.Dataset
– Daily climate data for a single or list of locations.- Return type:
Examples
>>> import pygridmet as gridmet >>> coords = (-1431147.7928, 318483.4618) >>> dates = ("2000-01-01", "2000-01-31") >>> clm = gridmet.get_bycoords( ... coords, ... dates, ... crs=3542, ... ) >>> clm["pr (mm)"].mean() 9.677
- pygridmet.pygridmet.get_bygeom(geometry, dates, crs=4326, variables=None, snow=False, snow_params=None, ssl=True)#
Get gridded data from the GridMET database at 1-km resolution.
- Parameters:
geometry (
Polygon
,MultiPolygon
, orbbox
) – The geometry of the region of interest.dates (
tuple
orlist
, optional) – Start and end dates as a tuple (start, end) or a list of years [2001, 2010, …].crs (
str
,int
, orpyproj.CRS
, optional) – The CRS of the input geometry, defaults to epsg:4326.variables (
str
orlist
) – List of variables to be downloaded. The acceptable variables are:pr
,rmax
,rmin
,sph
,srad
,th
,tmmn
,tmmx
,vs
,bi
,fm100
,fm1000
,erc
,etr
,pet
, andvpd
. Descriptions can be found here. Defaults toNone
, i.e., all the variables are downloaded.snow (
bool
, optional) – Compute snowfall from precipitation and minimum temperature. Defaults toFalse
.snow_params (
dict
, optional) – Model-specific parameters as a dictionary that is passed to the snowfall function. These parameters are only used ifsnow
isTrue
. Two parameters are required:t_rain
(deg C) which is the threshold for temperature for considering rain andt_snow
(deg C) which is the threshold for temperature for considering snow. The default values are{'t_rain': 2.5, 't_snow': 0.6}
that are adopted from https://doi.org/10.5194/gmd-11-1077-2018.ssl (
bool
, optional) – Whether to verify SSL certification, defaults toTrue
.
- Returns:
xarray.Dataset
– Daily climate data within the target geometry.- Return type:
Examples
>>> from shapely import Polygon >>> import pygridmet as gridmet >>> geometry = Polygon( ... [[-69.77, 45.07], [-69.31, 45.07], [-69.31, 45.45], [-69.77, 45.45], [-69.77, 45.07]] ... ) >>> clm = gridmet.get_bygeom(geometry, 2010, variables="tmmn") >>> clm["tmmn"].mean().item() 274.167