pydaymet.pet#
Core class for the Daymet functions.
Module Contents#
- pydaymet.pet.potential_et(clm: pandas.DataFrame, coords: tuple[float, float], crs: CRSType, method: Literal['penman_monteith', 'priestley_taylor', 'hargreaves_samani'] = ..., params: dict[str, float] | None = ...) pandas.DataFrame#
- pydaymet.pet.potential_et(clm: xarray.Dataset, coords: None = None, crs: None = None, method: Literal['penman_monteith', 'priestley_taylor', 'hargreaves_samani'] = ..., params: dict[str, float] | None = ...) xarray.Dataset
Compute Potential EvapoTranspiration for both gridded and a single location.
- Parameters:
clm (
pandas.DataFrameorxarray.Dataset) – The dataset must include at least the following variables:Minimum temperature in degree celsius
Maximum temperature in degree celsius
Solar radiation in in W/m2
Daylight duration in seconds
Optionally, for
penman_monteith, wind speed at 2-m level will be used if available, otherwise, default value of 2 m/s will be assumed. Table below shows the variable names that the function looks for in the input data.pandas.DataFramexarray.Datasettmin (degrees C)tmintmax (degrees C)tmaxsrad (W/m2)sraddayl (s)daylu2m (m/s)u2mcoords (
tupleoffloats, optional) – Coordinates of the daymet data location as a tuple, (x, y). This is required whenclmis aDataFrame.crs (
str,int, orpyproj.CRS, optional) – The spatial reference of the input coordinate, defaults toEPSG:4326. This is only used whenclmis aDataFrame.method (
str, optional) – Method for computing PET. Supported methods arepenman_monteith,priestley_taylor, andhargreaves_samani. Thepenman_monteithmethod is based on Allen et al.[1] assuming that soil heat flux density is zero. Thepriestley_taylormethod is based on Priestley and TAYLOR[2] assuming that soil heat flux density is zero. Thehargreaves_samanimethod is based on Hargreaves and Samani[3]. Defaults tohargreaves_samani.params (
dict, optional) – Model-specific parameters as a dictionary, defaults toNone. Valid parameters are:penman_monteith:soil_heat_flux,albedo,alpha, andarid_correction.priestley_taylor:soil_heat_flux,albedo, andarid_correction.hargreaves_samani: None.
Default values for the parameters are:
soil_heat_flux= 0,albedo= 0.23,alpha= 1.26, andarid_correction= False. An important parameter forpriestley_taylorandpenman_monteithmethods isarid_correctionwhich is used to correct the actual vapor pressure for arid regions. Since relative humidity is not provided by Daymet, the actual vapor pressure is computed assuming that the dewpoint temperature is equal to the minimum temperature. However, for arid regions, FAO 56 suggests subtracting minimum temperature by 2-3 °C to account for the fact that in arid regions, the air might not be saturated when its temperature is at its minimum. For such areas, you can pass{"arid_correction": True, ...}to subtract 2 °C from the minimum temperature for computing the actual vapor pressure.
- Returns:
pandas.DataFrameorxarray.Dataset– The input DataFrame/Dataset with an additional variable namedpet (mm/day)forpandas.DataFrameandpetforxarray.Dataset.
References