pygeohydro.stnfloodevents#
Access USGS Short-Term Network (STN) via Restful API.
Module Contents#
- class pygeohydro.stnfloodevents.STNFloodEventData#
Client for STN Flood Event Data’s RESTFUL Service API.
Advantages of using this client are:
The user does not need to know the details of RESTFUL in general and of this API specifically.
Parses the data and returns Python objects (e.g., pandas.DataFrame, geopandas.GeoDataFrame) instead of JSON.
Convenience functions are offered for data dictionaries.
Geo-references the data where applicable.
- data_dictionary_url#
The data dictionary url of the STN Flood Event Data RESTFUL Service API.
- Type:
- instruments_query_params#
The accepted query parameters for the instruments data type. Accepted values are
SensorType
,CurrentStatus
,States
,Event
,County
,DeploymentType
,EventType
,EventStatus
, andCollectionCondition
.- Type:
- peaks_query_params#
The accepted query parameters for the peaks data type. Accepted values are
EndDate
,States
,Event
,StartDate
,County
,EventType
, andEventStatus
.- Type:
- hwms_query_params#
The accepted query parameters for the hwms data type. Accepted values are
EndDate
,States
,Event
,StartDate
,County
,EventType
, andEventStatus
.- Type:
- sites_query_params#
The accepted query parameters for the sites data type. Accepted values are
OPDefined
,HousingTypeOne
,NetworkName
,HousingTypeSeven
,RDGOnly
,HWMOnly
,Event
,SensorOnly
,State
,SensorType
, andHWMSurveyed
.- Type:
Notes
Point data from the service is assumed to be in the WGS84 coordinate reference system (
EPSG:4326
).References
- classmethod get_all_data(data_type: str, *, as_list: Literal[False] = False, crs: CRSType = 4326, async_retriever_kwargs: dict[str, Any] | None = None) geopandas.GeoDataFrame | pandas.DataFrame #
- classmethod get_all_data(data_type: str, *, as_list: Literal[True], crs: CRSType = 4326, async_retriever_kwargs: dict[str, Any] | None = None) list[dict[str, Any]]
Retrieve all data from the STN Flood Event Data API.
- Parameters:
data_type (
str
) – The data source from STN Flood Event Data API. It can beinstruments
,peaks
,hwms
, orsites
.as_list (
bool
, optional) – If True, return the data as a list, defaults to False.crs (
int
,str
, orpyproj.CRS
, optional) – Desired Coordinate reference system (CRS) of output. Only used for GeoDataFrames withhwms
andsites
data types.async_retriever_kwargs (
dict
, optional) – Additional keyword arguments to pass toasync_retriever.retrieve_json()
. Theurl
andrequest_kwds
options are already set.
- Returns:
geopandas.GeoDataFrame
orpandas.DataFrame
orlist
ofdict
– The retrieved data as a GeoDataFrame, DataFrame, or a list of dictionaries.- Raises:
InputValueError – If the input data_type is not one of
instruments
,peaks
,hwms
, orsites
See also
get_filtered_data()
Retrieves filtered data for a given data type.
data_dictionary()
Retrieves the data dictionary for a given data type.
Notes
Notice schema differences between the data dictionaries, filtered data queries, and all data queries. This is a known issue and is being addressed by USGS.
Examples
>>> from pygeohydro.stnfloodevents import STNFloodEventData >>> data = STNFloodEventData.get_all_data(data_type="instruments") >>> data.shape[1] 18 >>> data.columns Index(['instrument_id', 'sensor_type_id', 'deployment_type_id', 'location_description', 'serial_number', 'interval', 'site_id', 'event_id', 'inst_collection_id', 'housing_type_id', 'sensor_brand_id', 'vented', 'instrument_status', 'data_files', 'files', 'last_updated', 'last_updated_by', 'housing_serial_number'], dtype='object')
- classmethod get_filtered_data(data_type: str, query_params: dict[str, Any] | None = None, *, as_list: Literal[False] = False, crs: CRSType = 4326, async_retriever_kwargs: dict[str, Any] | None = None) geopandas.GeoDataFrame | pandas.DataFrame #
- classmethod get_filtered_data(data_type: str, query_params: dict[str, Any] | None = None, *, as_list: Literal[True], crs: CRSType = 4326, async_retriever_kwargs: dict[str, Any] | None = None) list[dict[str, Any]]
Retrieve filtered data from the STN Flood Event Data API.
- Parameters:
data_type (
str
) – The data source from STN Flood Event Data API. It can beinstruments
,peaks
,hwms
, orsites
.query_params (
dict
, optional) – RESTFUL API query parameters. For accepted values, see the STNFloodEventData class attributesinstruments_query_params
,peaks_query_params
,hwms_query_params
, andsites_query_params
for available values.- Also, see the API documentation for each data type for more information:
as_list (
bool
, optional) – If True, return the data as a list, defaults to False.crs (
int
,str
, orpyproj.CRS
, optional) – Desired Coordinate reference system (CRS) of output. Only used for GeoDataFrames outputs.async_retriever_kwargs (
dict
, optional) – Additional keyword arguments to pass toasync_retriever.retrieve_json()
. Theurl
andrequest_kwds
options are already set.
- Returns:
geopandas.GeoDataFrame
orpandas.DataFrame
orlist
ofdict
– The retrieved data as a GeoDataFrame, DataFrame, or a list of dictionaries.- Raises:
InputValueError – If the input data_type is not one of
instruments
,peaks
,hwms
, orsites
InputValueError – If any of the input query_params are not in accepted parameters (See
instruments_query_params
,peaks_query_params
,hwms_query_params
, orsites_query_params
).
See also
get_all_data()
Retrieves all data for a given data type.
data_dictionary()
Retrieves the data dictionary for a given data type.
Notes
Notice schema differences between the data dictionaries, filtered data queries, and all data queries. This is a known issue and is being addressed by USGS.
Examples
>>> from pygeohydro.stnfloodevents import STNFloodEventData >>> query_params = {"States": "SC, CA"} >>> data = STNFloodEventData.get_filtered_data(data_type="instruments", query_params=query_params) >>> data.shape[1] 34 >>> data.columns Index(['sensorType', 'deploymentType', 'eventName', 'collectionCondition', 'housingType', 'sensorBrand', 'statusId', 'timeStamp', 'site_no', 'latitude', 'longitude', 'siteDescription', 'networkNames', 'stateName', 'countyName', 'siteWaterbody', 'siteHDatum', 'sitePriorityName', 'siteZone', 'siteHCollectMethod', 'sitePermHousing', 'instrument_id', 'sensor_type_id', 'deployment_type_id', 'location_description', 'serial_number', 'housing_serial_number', 'interval', 'site_id', 'vented', 'instrument_status', 'data_files', 'files', 'geometry'], dtype='object')
- pygeohydro.stnfloodevents.stn_flood_event(data_type, query_params=None)#
Retrieve data from the STN Flood Event Data API.
- Parameters:
data_type (
str
) – The data source from STN Flood Event Data API. It can beinstruments
,peaks
,hwms
, orsites
.query_params (
dict
, optional) – RESTFUL API query parameters, defaults toNone
which returns apandas.DataFrame
of information about the givendata_type
. For accepted values, see theSTNFloodEventData
class attributesinstruments_query_params
,peaks_query_params
,hwms_query_params
, andsites_query_params
for available values.Also, see the API documentation for each data type for more information:
- Returns:
geopandas.GeoDataFrame
orpandas.DataFrame
– The retrieved data as a GeoDataFrame or DataFrame (ifquery_params
is not passed).- Raises:
InputValueError – If the input data_type is not one of
instruments
,peaks
,hwms
, orsites
InputValueError – If any of the input query_params are not in accepted parameters.
- Return type:
References
Notes
Notice schema differences between the data dictionaries, filtered data queries, and all data queries. This is a known issue and is being addressed by USGS.
Examples
>>> query_params = {"States": "SC, CA"} >>> data = stn_flood_event("instruments", query_params=query_params) >>> data.shape[1] 34 >>> data.columns Index(['sensorType', 'deploymentType', 'eventName', 'collectionCondition', 'housingType', 'sensorBrand', 'statusId', 'timeStamp', 'site_no', 'latitude', 'longitude', 'siteDescription', 'networkNames', 'stateName', 'countyName', 'siteWaterbody', 'siteHDatum', 'sitePriorityName', 'siteZone', 'siteHCollectMethod', 'sitePermHousing', 'instrument_id', 'sensor_type_id', 'deployment_type_id', 'location_description', 'serial_number', 'housing_serial_number', 'interval', 'site_id', 'vented', 'instrument_status', 'data_files', 'files', 'geometry'], dtype='object')