Some utilities for manipulating GeoSpatial data.

Module Contents#

class pygeoutils.geotools.Coordinates#

Generate validated and normalized coordinates in WGS84.

  • lon (float or list of floats) – Longitude(s) in decimal degrees.

  • lat (float or list of floats) – Latitude(s) in decimal degrees.

  • bounds (tuple of length 4, optional) – The bounding box to check of the input coordinates fall within. Defaults to WGS84 bounds.


>>> from pygeoutils import Coordinates
>>> c = Coordinates([460, 20, -30], [80, 200, 10])
>>> c.points.x.tolist()
[100.0, -30.0]
property points: geopandas.GeoSeries#

Get validate coordinate as a geopandas.GeoSeries.

class pygeoutils.geotools.GeoBSpline(points, npts_sp, degree=3)#

Create B-spline from a geo-dataframe of points.

  • points (geopandas.GeoDataFrame or geopandas.GeoSeries) – Input points as a GeoDataFrame or GeoSeries in a projected CRS.

  • npts_sp (int) – Number of points in the output spline curve.

  • degree (int, optional) – Degree of the spline. Should be less than the number of points and greater than 1. Default is 3.


>>> from pygeoutils import GeoBSpline
>>> import geopandas as gpd
>>> xl, yl = zip(
...     *[
...         (-97.06138, 32.837),
...         (-97.06133, 32.836),
...         (-97.06124, 32.834),
...         (-97.06127, 32.832),
...     ]
... )
>>> pts = gpd.GeoSeries(gpd.points_from_xy(xl, yl, crs=4326))
>>> sp = GeoBSpline(pts.to_crs("epsg:3857"), 5).spline
>>> pts_sp = gpd.GeoSeries(gpd.points_from_xy(sp.x, sp.y, crs="epsg:3857"))
>>> pts_sp = pts_sp.to_crs(4326)
>>> list(zip(pts_sp.x, pts_sp.y))
[(-97.06138, 32.837),
(-97.06135, 32.83629),
(-97.06131, 32.83538),
(-97.06128, 32.83434),
(-97.06127, 32.83319)]
property spline: Spline#

Get the spline as a Spline object.

pygeoutils.geotools.break_lines(lines, points, tol=0.0)#

Break lines at specified points at given direction.

  • lines (geopandas.GeoDataFrame) – Lines to break at intersection points.

  • points (geopandas.GeoDataFrame) – Points to break lines at. It must contain a column named direction with values up or down. This column is used to determine which part of the lines to keep, i.e., upstream or downstream of points.

  • tol (float, optional) – Tolerance for snapping points to the nearest lines in meters. The default is 0.0.


geopandas.GeoDataFrame – Original lines except for the parts that have been broken at the specified points.


Convert a single coordinate or list of coordinates to a list of coordinates.


coords (tuple of list of tuple) – Input coordinates


list of tuple – List of coordinates as [(x1, y1), ...].

pygeoutils.geotools.geo2polygon(geometry, geo_crs=None, crs=None)#

Convert a geometry to a Shapely’s Polygon and transform to any CRS.

  • geometry (Polygon or tuple of length 4) – Polygon or bounding box (west, south, east, north).

  • geo_crs (int, str, or pyproj.CRS, optional) – Spatial reference of the input geometry, defaults to None.

  • crs (int, str, or pyproj.CRS) – Target spatial reference, defaults to None.


shapely.Polygon or shapely.MultiPolygon – A (Multi)Polygon in the target CRS, if different from the input CRS.


Get a list of polygons, points, and lines from a geometry.


Convert multipolygons to polygon and fill holes, if any.


This function tries to convert multipolygons to polygons by first checking if multiploygons can be directly converted using their exterior boundaries. If not, will try to remove those small sub-polygons that their area is less than 1% of the total area of the multipolygon. If this fails, the original multipolygon will be returned.


gdf (geopandas.GeoDataFrame or geopandas.GeoSeries) – A GeoDataFrame or GeoSeries with (multi)polygons in a projected coordinate system.


geopandas.GeoDataFrame or geopandas.GeoSeries – A GeoDataFrame or GeoSeries with polygons.


Get nested polygons in a GeoDataFrame.


gdf (geopandas.GeoDataFrame or geopandas.GeoSeries) – A GeoDataFrame or GeoSeries with (multi)polygons.


dict – A dictionary where keys are indices of larger ploygons and values are a list of indices of smaller polygons that are contained within the larger polygons.

pygeoutils.geotools.query_indices(tree_gdf, input_gdf, predicate='intersects')#

Find the indices of the input_geo that intersect with the tree_geo.


dict – A dictionary of the indices of the input_gdf that intersect with the tree_gdf. Keys are the index of input_gdf and values are a list of indices of the intersecting tree_gdf.

pygeoutils.geotools.snap2nearest(lines, points, tol)#

Find the nearest points on a line to a set of points.


geopandas.GeoDataFrame or geopandas.GeoSeries – Points snapped to lines.