pygeohydro.nid#
Accessing data from the supported databases through their APIs.
Module Contents#
- class pygeohydro.nid.NID#
Retrieve data from the National Inventory of Dams web service.
- get_byfilter(query_list)#
Query dams by filters from the National Inventory of Dams web service.
- Parameters:
query_list (
list
ofdict
) – List of dictionary of query parameters. For an exhaustive list of the parameters, use the advanced fields dataframe that can be accessed viaNID().fields_meta
. Some filter require min/max values such asdamHeight
anddrainageArea
. For such filters, the min/max values should be passed like so:{filter_key: ["[min1 max1]", "[min2 max2]"]}
.- Returns:
list
ofgeopandas.GeoDataFrame
– Query results in the same order as the input query list.- Return type:
Examples
>>> from pygeohydro import NID >>> nid = NID() >>> query_list = [ ... {"drainageArea": ["[200 500]"]}, ... {"nidId": ["CA01222"]}, ... ] >>> dam_dfs = nid.get_byfilter(query_list)
- get_bygeom(geometry, geo_crs)#
Retrieve NID data within a geometry.
- Parameters:
- Returns:
geopandas.GeoDataFrame
– GeoDataFrame of NID data- Return type:
Examples
>>> from pygeohydro import NID >>> nid = NID() >>> dams = nid.get_bygeom((-69.77, 45.07, -69.31, 45.45), 4326)
- get_suggestions(text, context_key=None)#
Get suggestions from the National Inventory of Dams web service.
Notes
This function is useful for exploring and/or narrowing down the filter fields that are needed to query the dams using
get_byfilter
.- Parameters:
- Returns:
tuple
ofpandas.DataFrame
– The suggestions for the requested text as two DataFrames: First, is suggestions found in the dams properties and second, those found in the query fields such as states, huc6, etc.- Return type:
Examples
>>> from pygeohydro import NID >>> nid = NID() >>> dams, contexts = nid.get_suggestions("houston", "city")
- inventory_byid(federal_ids)#
Get extra attributes for dams based on their dam ID.
Notes
This function is meant to be used for getting extra attributes for dams. For example, first you need to use either
get_bygeom
orget_byfilter
to get basic attributes of the target dams. Then you can use this function to get extra attributes using theid
column of theGeoDataFrame
thatget_bygeom
orget_byfilter
returns.- Parameters:
federal_ids (
list
ofstr
) – List of the target dam Federal IDs.- Returns:
pandas.DataFrame
– Dams with extra attributes in addition to the standard NID fields that otherNID
methods return.- Return type:
Examples
>>> from pygeohydro import NID >>> nid = NID() >>> dams = nid.inventory_byid(['KY01232', 'GA02400', 'NE04081', 'IL55070', 'TN05345'])
- stage_nid_inventory(fname=None)#
Download the entire NID inventory data and save to a parquet file.
- Parameters:
fname (
str
,pathlib.Path
, optional) – The path to the file to save the data to, defaults to./cache/full_nid_inventory.parquet
.
- property df#
Entire NID inventory (
csv
version) as apandas.DataFrame
.
- property gdf#
Entire NID inventory (
gpkg
version) as ageopandas.GeoDataFrame
.
- property nid_inventory_path: pathlib.Path#
Path to the NID inventory parquet file.